# Schritt-für-Schritt Anleitung

In der Schritt-für-Schritt Anleitung erklären wir Dir, wie du schnell und sicher eine Traversenkonstruktion modellieren und berechnen kannst. Dafür bauen wir in einem Beispielprojekt ein Traversenkareee mit ausgepipten Scheinwerfern, einer aufgelegten Traverse und einem Prerig.



# Zeichnung herunterladen

Die komplette Zeichnung kannst die HIER herunterladen (oder klicke auf das Bild zum Herunterladen).

Wir starten mit einem einfachen Traversenkarree als Grundlage für die Modellierung. Das Traversenkarree ist 6m breit und 4m tief.



# Eine kurze Begriffserklärung

In dieser Anleitung sowie in der gesamten Dokumentation zu VStatics tauchen immer die gleichen Begriffe auf, um bestimmte Dinge zu erklären oder Zusammenhänge zu definieren. Hier gibt es eine Übersicht über die wichtigsten Begrifflichkeiten



# Traversen einfügen und verbinden

Für die Kontruktion des Traversenkareee für dieses Beispielprojekt findest du hier weitere Informationen für



# Layer anlegen

In diesem Beispielprojekt legen wir einige Layer an, um die Zeichnung zu strukturieren und die Möglichkeit zu geben, Symbole ein- und ausblenden zu können.

  • 1_Motoren
  • 2_Licht
  • 3_Audio
  • 4_Rigging
  • 5_Vorhang


# Motoren hinzufügen

Um die Traverse in der Höhe zu halten, werden Supports, also Abhängepunkte, Motoren oder Traversensteher (bei Ground-Support-Systemen) benötigt. In diesem Beispielprojekt verwenden wir Motoren, mit denen das Traversenkarree in die Höhe gefahren werden kann.

Füge aus dem Rigging Design-Center einen beliebigen Motor ein.

In diesem Beispielprojekt verwenden wir vier regulären D8-Motoren mit eine Tragkraft von 500kg. Positioniere die Motoren beim Einfügen über der Traverse, so dass der Motor nach dem Einfügen direkt mit der Traverse verbunden werden kann. Die Verbindung erkennst du an dem blauen Punkt in der Mitte des Motors.

Einfügen von vier Motoren aus dem Rigging Design-Center
Einfügen von vier Motoren aus dem Rigging Design-Center



# Scheinwerfer einfügen

Füge einen oder mehrere Scheinwerfer deiner Wahl aus dem Licht Design-Center als Verbraucher ein. In diesem Beispielprojekt verwenden wir ein paar ETC Source4 Profilscheinwerfer und GLP Impressions.

Einfügen von Scheinwerfern aus dem Licht Design-Center
Einfügen von Scheinwerfern aus dem Licht Design-Center



# Lautsprecher einfügen

Füge einen oder mehrere Lautsprecher deiner Wahl aus dem Audio Design-Center als Verbraucher ein. In diesem Beispielprojekt verwenden wir ein zwei Nexo GEO-S 6-fach Arrays.

Einfügen von Lautsprecher aus dem Audio Design-Center
Einfügen von Lautsprecher aus dem Audio Design-Center



# Gewichte einfügen

Gewichte sind üblicherweise Einzellasten, die zu keinem der anderen technischen Gewerke der Veranstaltungstechnik (Licht, Audio, Video) gehören. Gewichte in Form von Einzellasten können zum Beispiel schmale Banner mit einer Aufhängung oder andere Abhängungen mit einem definierten Gewicht sein.

Bei AutoSTAGE werden Gewichtssymbole eingefügt, um allgemeine Einzellasten anzuzeigen. In diesem Beispielprojekt werden vier Einzellasten mit jeweils 50kg Gewicht eingefügt.

Einfügen von Gewichtssymbolen aus dem Rigging-Tab
Einfügen von Gewichtssymbolen aus dem Rigging-Tab



# Streckenlasten einfügen

Streckenlasten können Leitungs- und Kabelwege, Banner oder Vorhänge sein, die auf der Traverse liegen bzw. an der Traverse hängen oder befestigt sind.

In diesem Beispielprojekt werden zwei Vorhänge gehängt, einen an die linke Seite der Traversenkarrees und eine an die rechte Seite.

Einfügen von Vorhängen als Streckenlasten
Einfügen von Vorhängen als Streckenlasten



# Verbindungen manuell herstellen

Beim Einfügen der Symbole werden Traversen automatisch miteinander verbunden. Auch alle Verbraucher (siehe Grundlagen/Modellierung) werden automatisch mit den Traversen verbunden. Diese Verbindung kann auch manuell mit dem Befehl ASTRCON hergestellt werden.

Manuelles Verbinden der Traversen und Verbraucher
Manuelles Verbinden der Traversen und Verbraucher



# Visualisierung für Einzellasten anzeigen

Wenn Verbraucher und Supports mit der Traverse verbunden sind, dann kann eine Visualisierung der Einzellasten als Pfeil angezeigt werden. Die Visualisierung der Lastpfeile werden von den Traversen generiert, in denen die Modellierung der Einzellasten gespeichert sind. Die visualisierung hilft zu erkennen, wenn Fehler in der Modellierung vorhanden sind, zum Beispiel wenn Einzellasten nicht mit der Traverse verbunden sind.

Anzeigen der Visualisierung von Einzellasten an der Traverse
Anzeigen der Visualisierung von Einzellasten an der Traverse

Die Lastpfeile zeigen die verwendeten Gewichte der Einzellasten an.



# Gewichte anpassen

Wir sehen, dass den vier Motoren sowie den beiden Lautsprecher-Arrays kein Gewicht zugeordnet ist. Für eine realistische Modellierung sollten dort entsprechende Gewichte verwendet werden.

Zur Anpassung der Gewichte der Verbraucher gibt es verschiedene Möglichkeiten. Der einfachste Weg der Gewichtsanpassung ist über Gewichte-Palette, die mit dem Befehl ASWG aufgerufen wird.

Anpassen von fehlenden Gewichten von Einzellasten
Anpassen von fehlenden Gewichten von Einzellasten



# Visualisierung für Streckenlasten anzeigen

Wenn Streckenlasten mit einer Traverse verbunden sind, dann kann eine Visualisierung der Streckenlasten angezeigt werden. Die Visualisierung der Streckenlast wird von den Traversen generiert, in denen die Modellierung der Streckenlasten gespeichert sind.

Anzeigen der Visualisierung von Streckenlasten an der Traverse
Anzeigen der Visualisierung von Streckenlasten an der Traverse



# Berechnen des Modells

Die Modellierung der Zeichnung ist fertig gestellt, die Berechnung kann mit dem Befehl ASVSCALC gestartet werden.

Berechnung des Modells in der Zeichnung
Berechnung des Modells in der Zeichnung



# Anzeige der berechneten Punktlasten

An den Supports (hier Motoren) werden im jeweiligem Label die berechneten Punktlasten angezeigt. Zusätzlich wird die berechnete Punktlast als Pfeil-Visualisierung angezeigt.

Wenn die Hintergrundfarbe des Labels eines Supports anstelle einer grünen Farbe eine gelbe oder rote Farbe anzeigt, dann wird die Grenze der Tragfähigkeit des Supports erreicht oder überschritten (siehe auch Visualisierung der Traversenstrecken). Die gleiche Anzeige gilt für den Lastpfeil der Supports.

Anzeige der Punktlasten am Motor
Anzeige der Punktlasten am Motor



# Visualisierung der Traversenstrecken

Bei der Berechnung werden einzelne Traversenstrecken von den jeweiligen Start- und Endpunkten, bzw. bis zu einer Traversenecke, als eine einzelne Strecke in einer sog. LongTruss zusammengefasst. In der LongTruss ist, wie bei den einzelnen Traversen, die Modellierung der Verbraucher gespeichert und wird dort ebenfalls mit Lastpfeilen visualisiert.

Visualisierung der Traversenstrecken als LongTruss
Visualisierung der Traversenstrecken als LongTruss

Das Textfeld der LongTruss zeigt nach der Berechnung von links nach rechts folgende Informationen an:

  • Name des Traversensystems
  • Länge der LongTruss vom Start- bis Endpunkt
  • Handle-Id zur Identifizierung im Report und Log
  • Maximale Auslastung der Traverse (siehe Traversenbemessung)

Über die Traversenbemessung kann auf einem Blick erfasst werden, wie hoch die Gesamtbelastung einer Traversenstrecke ist.

Wenn die Hintergrundfarbe des Textes der LongTruss anstelle einer grünen Farbe eine gelbe oder rote Farbe anzeigt, dann wird die Grenze der Belastungsfähigkeit einer Traverse erreicht oder überschritten. Das gleiche gilt für die Labels und Lastpfeile der Supports, wie hier im Beispiel zu sehen ist:

Beispiel für Traversen und Motoren an der Belastungsgrenze der Tragfähigkeit
Beispiel für Traversen und Motoren an der Belastungsgrenze der Tragfähigkeit



# Berechnungs- und Anzeigeeinstellungen ändern

Weitere Einstellungen für die Berechnung und Anzeige der Ergebnisse können über die VStatics Einstellungen-Palette angepasst werden.

Berechnungs- und Anzeigeeinstellungen über die VStatics Einstellungen-Palette ändern
Berechnungs- und Anzeigeeinstellungen über die VStatics Einstellungen-Palette ändern



# Schnittreaktionen anzeigen

Nach der Berechnung können die Kurvenverläufe folgender Schnittreaktionen angezeigt werden:

  • Biegemoment Mby
  • Querkraft Fqz
  • Durchbiegung dz

Anhand der Kurvenverläufe der Schnittreaktionen kann ein geübtes Auge erkennen, an welchen Stellen der Konstruktion problematische Punkte für einen Ausfall des Systems liegen.

# Ansicht und Skallierung der Schnittreaktionen

Die Schnittreaktionen werden sowohl in der Draufsicht als auch in der 3D-Ansicht angezeigt (siehe nachfolgende Beispiele).

Die Kurven der Schnittreaktionen sind in der Regel zu klein, so dass diese mit einem Anzeigefaktor vergrößert werden müssen, damit diese gut sichtbar in der Visualisierung angezeigt werden.

# Biegemoment Mby

Das Biegemoment Mby ist eine der wichtigsten Schnittgrößen für die Beurteilung der Tragfähigkeit und Tauglichkeit von Bauteilen unter Biegebeanspruchung.

Visualisierung des Biegemoment Mby in der 2D-Draufsicht und 3D-Ansicht
Visualisierung des Biegemoment Mby in der 2D-Draufsicht und 3D-Ansicht

# Querkraft Fqz

Die Querkraft Fqz ist die innere Schubkraft senkrecht zur Stabachse, die Schubspannungen im Querschnitt erzeugt und für die Schubsicherheit des Bauteils maßgebend ist.

Visualisierung des Querkraft Fqz in der 2D-Draufsicht und 3D-Ansicht
Visualisierung des Querkraft Fqz in der 2D-Draufsicht und 3D-Ansicht

# Durchbiegung dz

Die Durchbiegung dz gibt die Verformung eines Bauteils in z-Richtung senkrecht zur ursprünglichen Stabachse an und ist ein Maß für die Tauglichkeit der Konstruktion.

Visualisierung des Durchbiegung dz in der 2D-Draufsicht und 3D-Ansicht
Visualisierung des Durchbiegung dz in der 2D-Draufsicht und 3D-Ansicht



# Report erzeugen und anzeigen

Bei jeder Berechnung wird automatisch ein ausführlicher Report im PDF-Format erstellt. Optional kann die Reporterstellung bei der Berechnung ausgeschaltet werden, so dass die Berechnung etwas schneller geht (der Unterschied dürfte aber in der Praxis kaum auffallen).

Der Report kann mit dem Befehl ASVSREPORT oder über die Schaltfläche im VStatics-Tab geöffnet werden.

Report anzeigen über den VStatics-Tab
Report anzeigen über den VStatics-Tab

Im Report sind alle wesentlichen Daten der Geometrie, der Berechnung und der daraus folgenden Ergebnisse zusammengefasst.

Auflistung der Punktlasten im Report
Auflistung der Punktlasten im Report



# Log erzeugen und anzeigen

Neben dem Report im PDF-Format wird bei jeder Berechnung eine sehr ausführliche Logdatei erstellt. Optional kann die Erstellung der Logdatei bei der Berechnung ausgeschaltet werden, dieses bringt aber keinen Zeitvorteil bei der Berechnung.

Die Logdatei kann mit dem Befehl ASVSLOG oder über die Schaltfläche im VStatics-Tab geöffnet werden.

Logdatei öffnen über den VStatics-Tab
Logdatei öffnen über den VStatics-Tab

In der Logdatei wird der komplette Ablauf der Modellierung und Berechnung dokumentiert. Die Logdatei enthält sehr viel mehr Daten als der Report und kann konsultiert werden, wenn ein tieferes Verständnis über eine Modellierung und Berechnung gewünscht ist.

Auflistung der Punktlasten in der Logdatei
Auflistung der Punktlasten in der Logdatei



# Pipes auflegen

Das Auspipen von Einzellasten ist gängige Praxis in der Veranstaltungstechnik. Beim Auspipen wird eine Alupipe auf eine Traverse gelegt und mit Schellen befestigt.

Wenn eine Pipe auf eine Traverse eingefügt wird, dann erkennt diese die darunterliegende Traverse. Die eingefügte Pipe wird dann in der Höhe verschoben, so dass diese auf der vorhandenen Traverse aufliegt. Abschließend wird die eingefügte Pipe mit der vorhandenen Traverse verbunden, die Verbindung wird mit runden Kreise an den Schnittpunkten visualisiert.

Visualisierung der Auflage von Pipes auf Traversen
Visualisierung der Auflage von Pipes auf Traversen

In diesem Beispielprojekt werden die Profilscheinwerfer mit Alupipes von der Traverse ausgepiped.

Auspipen von Scheinwerfern
Auspipen von Scheinwerfern



# Traversen auflegen

Das Auflegen von Traversen auf andere Traversen ist gängige Praxis in der Veranstaltungstechnik.

Wenn eine neu eingefügte Traverse eine andere, bereits vorhandene Traverse kreuzt, dann erkennt die eingefügte Traverse die darunterliegende vorhandene Traverse. Die eingefügte Traverse wird dann in der Höhe verschoben, so dass diese auf der vorhandenen Traverse aufliegt. Abschließend wird die eingefügte Traverse mit der vorhandenen Traverse verbunden, die Verbindung wird mit runden Kreise an den Schnittpunkten visualisiert.

Visualisierung der Auflage von Traversen auf Traversen
Visualisierung der Auflage von Traversen auf Traversen

In diesem Beispielprojekt wird in der Mitte des Traversenkarrees eine große Spiegelkugel aufgehängt. Dazu werden zwei Moving Lights gelöscht, um Platz für die aufgelegte Traverse zu schaffen.

Auspipen von Scheinwerfern
Auspipen von Scheinwerfern



# Prerig für Motor erstellen

Wenn es für ein Traversenrig an einer gewünschten Position nicht möglich ist, einen Hängepunkt oder Motor bereit zu stellen, wird oft mit Prerigs gearbeitet. Eine Prerig-Traverse wird dabei an verfügbaren Hängepunkten aufgehängt und dann der gewünschte Hängepunkt für das darunterhängende Traversenrig bereitgestellt (siehe auch Traversen abhängen).

Bereitsstellung eines Hängepunkts mit einem Prerig
Bereitsstellung eines Hängepunkts mit einem Prerig

In diesem Beispielprojekt wird der linke obere Motor des Traversenkarrees von einer Prerig-Strecke abgehängen, weil dieser Motor nicht direkt gehangen werden kann.

Dazu wird eine neue Traverse mit einer Länge von 2m schräg über den bestehenden Motor eingefügt. Die Traverse wird automatisch mit der darunterliegenden Traverse verbunden als aufgelegte Traverse. Diese Traverse soll aber als Prerig fungieren, so dass wir die Höhe der Prerig-Traverse in den Eigenschaften auf 3m setzen. Beim Verändern der Höhe erkennt automatisch die Prerig-Traverse wie auch die darunterliegende Traverse, dass beide mit einem Motor verbunden sind. Abschließend werden zwei Hängepunkte an der Prerig-Traverse befestigt.

Erstellen eines Prerigs für eine Motor
Erstellen eines Prerigs für eine Motor